Quadratic functions are of the form y = ax² + bx + c .
A quadratic function has a maximum or a minimum value, and its graph is symmetrical.
EXAMPLE
(a)6x² + 5 = 17x
(b) 9x² -39x -30 = 0
(c) A rectangle has sides of length x cm and (6x − 7) cm. The area of the rectangle is
90 cm² Find the lengths of the sides of the rectangle.
The quadratic formula
![](https://static.wixstatic.com/media/8cfa88_cf52000f8d0f4820ab77d9c15970b25a~mv2.png/v1/fill/w_256,h_93,al_c,q_85,enc_auto/8cfa88_cf52000f8d0f4820ab77d9c15970b25a~mv2.png)
EXAMPLE
(a) Solve 6x² + 5x+3 = 0 for x.
Hint:Here a = 6 ,b= 5, c = 3
Solving simultaneous equations using the graphical method
![](https://static.wixstatic.com/media/8cfa88_825a5fff5fd04ea59287fcfc4f9676fb~mv2.png/v1/fill/w_623,h_461,al_c,q_85,enc_auto/8cfa88_825a5fff5fd04ea59287fcfc4f9676fb~mv2.png)
The diagram shows the graphs of y =x² -4 and y=2x-1.
The coordinates of the points of intersection of the two graphs are ( 1− −, 3) and (3, 5).
x=-1 , y= -3 and x = 3,y=5 are the solutions of the simultaneous.
Algebraic solution
y =x² -4 and y=2x-1.
Substitute a variable,
x² -4 = 2x-1
Rearranging and factorising gives x=-1 , y= -3 and x = 3,y=5 as solutions
Complex forms:
Example :
![](https://static.wixstatic.com/media/8cfa88_3324f52684cc47faab9fb7487999e7c2~mv2.png/v1/fill/w_465,h_45,al_c,q_85,enc_auto/8cfa88_3324f52684cc47faab9fb7487999e7c2~mv2.png)
![](https://static.wixstatic.com/media/8cfa88_fb8eacfc842545d3af7db3303dfff8fe~mv2.png/v1/fill/w_270,h_415,al_c,q_85,enc_auto/8cfa88_fb8eacfc842545d3af7db3303dfff8fe~mv2.png)
Comments